MOTION OF A NONISOTHERMAL MIXTURE THROUGH A POROUS MEDIUM

L. K. Tsabek UDC 532.546

The equations of motion of nonisothermal dynamics of sorption in porous
media are analyzed for the internal diffusion kinetic domain.

Heat liberation occurs during the motion of a mixture of sorbable gases (liquids)
through a nondeformable porous medium because of sorption on the developed surface of
the porous grains. A considerable quantity of heat can be liberated for high sorbate
concentrations, resulting in a rise in the temperature of the solid phase of the porous
medium and the gas (liquid) temperature in the flow. The nonisothermal dynamics of
sorption in the external diffusion kinetic domain has been examined in [1, 2] without
taking account of the longitudinal mixing and without taking account of the heat ex-
change kinetics. Model equations of nonisothermal dynamics of sorption in a mixed ex-
ternal and internal diffusion kinetic domain are analyzed taking into account the lon-
gitudinal mixing of heat-exchange kinetics in this paper; a comparison is made between
the output dynamic distribution curves of the sorbate concentration and of the tempera-
ture in the stream computed by the model equations and experimentally; it is shown that
the model equations under consideration unsatisfactorily describe the nonisothermal
dynamics of sorption in porous media.

1. The nonisothermal dynamics of sorption in porous media is described by the
system of material balance equations for the concentration taking account of longi-
tudinal mixing, the model equations of sorption kinetics (1), the heat balance equation,
the equation of heat-exchange kinetics (2), and the initial and boundary conditions (3):
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The functions H and ¢ in the boundary conditions are determined from the solution of
the ordinary differential equations by the Runge-Kutta method:
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The model sorption kinetics equations (1) describe the kinetics in a mixed (external
and internal) diffusion kinetic domain. Such a form is convenient in that the kind of
equations is identical for the external and internal diffusion kinetic domain [3]. For
nonisothermal sorption kinetics the surface coverage function w can be found as the
residual from the solution of the system of parabolic diffusion equations foxr the con-
centration and temperature with thermal diffusion taken into account [3-5]. Porous
grains having a bidisperse structure (shaped zeolite, ion-exchange resins, etc.) are en-
countered in practice. The heat and mass transfer processes in such grains must be
described separately by a system of differential equations for each "monostructure."
In the general case, variable coefficients, dependent not only on the coordinates but
also on the force field within the narrow ''channels" (pores) of the grains, enter into
the heat and mass transfer equations in porous structures. Such a system of equations
is not solved successfully in the general case since the parameters and functions in
these equations [3] are not known. Hence, it is reasonable to use heat and mass trans-—
fer equations containing a smaller number of parameters and describing the heat and
mass transfer processes for the grain as a whole, averaged over the grain volume, to
analyze the sorption dynamics in porous media. The form of the surface coverage func-
tion w is found as the residual of the kinetics equation in each individual specific
case, where the form of the kinetics equation (1) is conserved. In this sense the
kinetics equation (1) is universal. The surface coverage functions of monodispersed
porous grains for sorption and desorption are, respectively,
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The constants dap, by, 8,80 can be found from the exact numerical values of w by least
squares. The system (1)-(4) can only be integrated numerically by using an electronic
computer for an arbitrary form of the isotherm and arbitrary initial and boundary con-
ditions. Since the coefficients of (1)-(2) are discontinuous in the general case, then
a conservative difference scheme in which the through computation converges in the
class of discontinuous coefficients must be used for the numerical integration. A con-
servative, implicit, iteration scheme of second-order accuracy was used; the system

of difference equations was solved by the factorization method [6]. It can be shown
that the necessary and sufficient condition for stability and convergence of the dif-
ference scheme is compliance with the conditions
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must be selected for practical computations. . In the general case the coefficient of
diffusion within porous grains depends on the sorbate concentration. Taking this de-
pendence into account, the exact diffusion equations of kinetics must be Integrated

[4, 5], and the form of the surface coverage function (5) must be found from the solu-
tion. The surface coverage function obtained must later be used in the integration of
the sorption dynamics equations. If the dependence of the relative coefficient of dif-
fusion on the sorbate concentration is described by the analytical dependence

g)=(1+oag (1 +oapr)? 0.Le<l, a,=const, (7)

then it can be shown that the surface coverage function (5) for the thermal Langmuir
function with parameter p [7]

% %
qg=pc(l+pc)t, p=peexp[—Q,T (1 + 7)Y

with a variable diffusion coefficient in the form (7) is equivalent to the surface
coverage function (5) with a constant diffusion coefficient and a thermal Langmuir
function with the equivalent diameter d:

g=p(l+oy)c(l +do)t, d=(p—a)(l +oy™ (8)

The coefficients and functions for the sorption and desorption processes are distinct
in (1)-(2); for sorption Y -+ Yo, ® > wo, 9@, f + fo, while for desorption y - v°,
w~>w’, ¢>¢° f > f° The functions ¢ and f can be given analytically or in tables,
where quadratic or cubic interpolation must be used in the latter case. To determine
the conditions under which sorption or desorption will proceed, let us use the inequali-
ties
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Sorption proceeds upon compliance with condition (9), and desorption upon compliance
with (10). Let us use the conditions

9> agh™. agf=qj a1
agh<gi, (12)

to select the form of the function ¢ (or f) in (9), (10), where ¢—¢, in (9), (10)
upon compliance with (11), and ¢—¢° upon compliance with (12). The values of q4J
are found from the solutions of (4). The heat transfer coefficients can differ depend-
ing on whether heating or cooling of the porous medium by the mixture sorbed occurs.
Upon compliance with the conditions
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heating of the porous medium occurs and m; - moi, Ms > Mes mMust be substituted in (1),

(2).

1412



e ’”

s

Iy

1Y 2
P [
A Lj

Py
§
g‘x\}é . A\ S5
A
905 H ¥
2
P
)

Fig. 1. Output curves of the sorbate concentration and gas—carrier
stream temperature distributions for different column lengths.
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Fig. 2. Distribution of the construction of absorbed substances and
the porous grain temperatures along a column for different times.

Upon compliance with the inequalities

* I~ .
8T < T , by, b, b = const (14)

cooling of the porous medium occurs and m; + m,°, ms - ms° must be substituted in (1),

(2).

The magnitudes of the coefficients of the equations must be known for practical
numerical computations using (1), (2), i.e., in substances the inverse problem must be
solved under definite conditions. The method of determining the kinetic coefficients
for the external and internal diffusion kinetics of sorption has been considered in
[8]. The sorption isotherm can be considered linear for very low concentrations and
thermal effects can be neglected. The magnitude of the symmetry parameter v of the
porous grains, the porosity o, and the effective coefficient of longitudinal mixing D
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(the longitudinal dispersion) can be found by using the method of statistical moments
[9] for low concentrations (linear isotherm region). The heat transfer coefficients
mi, Mo, ms can be determined from the solution of the inverse problem of the motion of
a thermal perturbation through a porous medium [10). The output frontal dynamical con-
centration distribution curves [11l] and the temperature in the stream of a gas—carrier
were measured for different porous column lengths in order to confirm the model equa-
tions (1), (2). The results of the experiment are shown in Figs. 1 and 2 by circles.
The porous medium was almost spherical grains of medium~porous silica gel. Benzene at
p/ps = 0.7 was used as the sorbate, and purified nitrogen as the gas-carrier. The tem-
perature was measured by using a copper—constantan thermocouple. The heat and mass
transfer coefficients in a porous medium were determined experimentally by the method
of [8-10], and the dimensionless coefficients in (1), (2) were then computed. The
system of equations of nonisothermal sorption dynamics was integrated on the BESM-6
electronic computer by a difference scheme, for known coefficients and with the follow-
ing parameters: a = 0.1, vy = 0.9, b =0, To = 4.5 min, po = 10, ao = 1.2, Q = 0.146,
Qo = 4, Moy = 2.4, my = 0.2, mos = 4, m,° = 1.25, m3°'= 2.1. The output curves of the
sorbate concentration and the gas-carrier stream temperature are shown by solid lines in
Fig. 1 for different column lengths (1, z = 2.5; 2, 5; 3, 10; 4, 15; 5, 22.5). The
concentration distribution of the absorbed substance and the porous grain temperatures
for distinct times along the columns are shown in Fig. 2 (1, t = 2.5; 2, 5; 3, 10; 4,
15; 5, 22.5). The dot-dash lines in the figure show the computed curves without heat
liberation during sorption. The difference between the experimental and theoretical
values of the concentration without taking account of heat liberation can be signifi-
cant for high values of the initial sorbate concentration.

2. Upon compliance with the conditions which will be presented below, for a con-
vex sorption isotherm a quasistationary front mode will build up in a porous column
after the lapse of a definite time. This mode will correspond to a quasi-invariant
solution of the Galilean transport operator [12], w(3/3z) — (3/3t) (w is the velocity
to be determined). By using group theory methods [13], it can be shown that the quasi-
stationary mode builds up for my = 0. 1In this case, for

¢e=0, H,=0, F() =1 (15)
the system (1), (2) is
d d * *
C~wq-—=a~c—. —vw—q:Q[q/f(c, Dllc— g (g, ), (16)
dy dy
% T % d
T—aT=Q ——=-"2T—-17)-Q,
dy w dy
my 1

,l:Z——wt, &’:C/ * *:q*(l"“a)_’
myw Y w4 (17)
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*
T,=maxT =maxT, ¢, = maxe, ¢, = maxq (in the wavefront)

Ty = Qg% g, = [(Cer Ty (") = Csy G(¥o) = G (18)

T(6%) =T () = Tur c(00) = g(00) = T (e0) = T (c0) =< 0.

The quantity q, is found from the integral form of the material balance equation. The
values of c,, T, are determined from the solution of a transcendental system of alge-
braic equations q, = f(c,, T,), T, = Qq*. The constants yo, y, are found from the in-

tegral form of (1), (2):
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The system (16), (17) can be reduced to a second-order and first-order eguation and the
system obtained can be integrated by the factorization method. Tt follows from
physical considerations for the conditions (18) that the functions q, ¢ should decrease
monotonely as y increases. Taking this into account, we find from (16}, (17)

* ;
wg>c>q (g, T). (20)

The thermal functions for which‘%t is impossible to draw a tangent from the point
[co, flco, O)] to the curve i{c, T) and for which condition (20) is satisfied, will be
called convex. "

The general solution of the inhomogeneous system (17) is

T
= Bexp(uy) - mQexp () { q (@) exp(—py)dy, p=—m(l—a),
® )
; (21)

#*
T r
*

= aBexp (uy) -- Qg + am;Q exp (py) 3 g (y) exp (—upy) dy, B = const.

[

For boundedness of the solution (21) we have p < 0. Hence,

Upon compliance with condition (22) and m, = 0 a quasi-invariant solution of the quasi-
stationary front type (a traveling wave) exists for a convex thermal function. The
solution of the system (16), (17) canbe found in analytic form for a step-—thermal func-
tion and an approximate surface coverage function

o {y) = bly. (23)

After manipulation, we write the approximate solution in this case as
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The constants y*, y, are found from the equations
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b b
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The solution (24) can be used to describe the nonisothermal dynamics of sorption for a
porous medium consisting of finely-porous silica gels, zeolites, and zeolite-containing
sorbents.

NOTATION

¢ is the sorbate concentration in the stream; q is the concentration of absorbed
substance; z and t are the dimensionless coordinate and time; o is the relative longi-
tudinal mixing coefficient; o = tp(tp + T4)~'; Tp is the deceleration time due to
longitudinal effective mixing; ti is the deceleration time due to the finite rate of
internal diffusion mass transfer; y = t4(tp + 14)”', Yy is the relative kinetic coeffi-
cient; bo = Te/T4; Te 1s the deceleration time due to finite rate of external diffu-
51on mass transfer, w(y) is the surface coverage function of a porous grain; Ttrue =
T (1 +7T); oK is the initial temperature; T is the temperature in the gas (liquid) stream;

% is the solid phase temperature of the porous grain; %true = To(1 + f); Q is the
thermal effect of sorption; m;, ms are the kinetic heat transfer coefficients; m, is
the kinetic heat transfer coefficient from the cylindrical channel wall of a porous
medium; T and h are time and coordinate spacing; To = Tp + T4; t = t'/To; 2z = 8z'/(uto);
g(e) = D(c)/D(e*); t' and z' are the dimensional time and coordinate; c* = max c.
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